Thermal slip and homogeneous/heterogeneous reaction characteristics of second-grade fluid flow over an exponentially stretching sheet

Author:

Khan Aamir Abbas1,Khan Muhammad Naveed2ORCID,Nadeem Sohail2,Hussain Syed Modassir3ORCID,Ashraf Muhammad1

Affiliation:

1. Department of Mathematics, University of Sargodha, Sargodha, Pakistan

2. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

3. Department of Mathematics, Faculty of Science, Islamic University of Madinah, Saudi Arabia

Abstract

This paper deals with an unsteady magnetohydrodynamic two-dimensional second-grade fluid flow towards a permeable exponentially stretching surface with heterogeneous–homogeneous reactions. The nonuniform heat source/sink, thermal slip, and thermal radiation effect are also considered to analyze the thermal attributes. The modeled equations of motions are converted into nonlinear ordinary differential equations (ODEs) by suitable transformations. A MATLAB Bvp4c approach is employed for the numerical solution of ODEs. The outcomes of various parameters are scrutinized by graphs. The quantities of interests such as Nusselt number and the skin friction are presented and discussed. The resistance effects take place due to higher estimations of second-grade parameter, as a result, the velocity field declines. The temperature field raises with the increment of radiation parameter. The concentration of nanoparticles decaying when heterogeneous-homogeneous reactions become larger. Moreover, from the tabulated data, it is noticed the growing estimations of K and M boosts the coefficient of skin friction.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3