Influence of thermal radiation, viscous dissipation, and joule heating on entropy generation and flow of a Maxwell hybrid nanofluid over an exponentially stretching sheet with couple stress effects

Author:

Kathyayani Gandrakota1ORCID,Gowd Poojari Prakash1

Affiliation:

1. Department of Applied Mathematics, Yogi Vemana University, Kadapa, Andhra Pradesh, India

Abstract

Using a numerical technique, this study explores the flow and thermal aspects of a Maxwell hybrid nanofluid across an exponentially stretched sheet. The analysis incorporates the effects of thermal radiation, viscous dissipation, Joule heating, and chemical reaction. We use the in-built MATLAB function bvp4c to successfully solve the governing equations after we convert them to ordinary differential equations. The key novelty of this work lies in employing the Maxwell hybrid nanofluid, a more complex fluid than traditional nanofluids or regular Maxwell fluids and conducting a multifaceted analysis that considers factors like couple stress, chemical reaction, and entropy generation optimization alongside flow and heat transfer. The findings demonstrate that the Maxwell parameter and the magnetic field parameter both reduce fluid velocity due to opposing forces and enhanced elasticity, respectively. The temperature profile exhibits a rise with increasing thermal radiation, volume fraction of nanoparticles, and Eckert number due to enhanced radiative absorption, improved heat transfer, and internal heat generation respectively. As the Brinkman number and volume percentage of copper nanoparticles increase, the entropy generation becomes more intense and the Bejan number decreases as a result of enhanced viscous dissipation and friction. Between the values of 0.1 and 0.7 for Maxwell parameter, the friction factor exhibits a decrement of 0.1077. The Nusselt number, signifying heat transfer efficiency, reduces with the Eckert number but increases with the radiation parameter and volume fraction of nanoparticles. Between the values of 0.1 and 0.7 for Eckert number, the friction factor exhibits a decrement of 0.1077. Lastly, a steeper concentration gradient causes the Sherwood number, which is an indication of the mass transmission rate, to rise with the Schmidt number. it is detected that the rate of heat transfer increases at a rate of 0.0721 when chemical reaction values lie between 0 and 1.8.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3