Experimental and computational analysis of the feed accelerator for a decanter centrifuge

Author:

Bell George RA1,Pearse John R1

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, New Zealand

Abstract

Industrial decanter centrifuges are used in a wide range of industries to separate mixtures of solids and liquids. One of the main elements of these devices is the feed accelerator, which accelerates the incoming mixture to the high rotational speed required for separation. A well-designed feed accelerator can increase product throughput, solids recovery, and liquid clarity, while a poorly designed accelerator can increase wear and reduce the overall efficiency of the machine. This article presents experimental and computational quantification of the performance of six feed accelerator designs that are currently used in decanter centrifuges. The experimental method allowed for the measurement of accelerator and pool speed efficiencies, and high-speed photography of the flow in the annular space between the accelerator and the rotating pool. The computational model allowed for prediction of the flow path in the annular space and the torque imparted on the fluid by the accelerator. A parametric study was conducted using the aforementioned computational model for drum and disk accelerators. It was found that several of the accelerator design parameters were critical to the overall performance, reinforcing the need for an optimised design. It was found that increasing the surface area of the port faces of the drum accelerator and increasing the discharge angle and discharge radius for the disk accelerator improved the performance of the accelerators.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3