Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Infected Wound Healing

Author:

Kardan Tara1ORCID,Mohammadi Rahim1ORCID,Tukmechi Amir2,Mohammadi Vahid3

Affiliation:

1. Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2. Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

3. Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

Abstract

The aim of the present study was to evaluate effects of curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles (C-PEG-CGNPs) on healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in rat as a model study. Forty male Wistar rats were randomized into 5 groups of 8 animals each. In CNTRL group, no infected/no treated wounds were covered with sterile saline 0.9% solution (0.1 mL). In MRSA group, MRSA-infected wounds were only treated with sterile saline 0.9% solution (0.1 mL). In MRSA/CP group, 0.1 mL curcumin nanoparticles (1 mg/mL) was applied topically to treat MRSA-infected wounds. In MRSA/CG group, 0.1 mL CG (1 mg/mL) was applied topically to treat MRSA-infected wounds. In MRSA/CP-CG group, 0.1 mL CP-CG (1 mg/mL) was applied topically to treat MRSA-infected wounds. Microbiological examination; planimetric, biochemical, histological, morphometric studies, angiogenesis, hydroxyproline levels, and reverse transcription polymerase chain reaction for caspase 3, Bcl-2, and p53 showed significant difference between rats in MRSA/CP-CG group in comparison with other groups ( P < .05). Accelerated and improved healing in wounds infected with MRSA were observed in animals treated with C-PEG-CGNPs. Via increasing solubility of curcumin in C-PEG-CGNP, this harmless and easily available composition could be considered to be topically applied in infected wounds.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3