Stabilizing unstable periodic orbit of unknown fractional-order systems via adaptive delayed feedback control

Author:

Yaghooti Bahram1ORCID,Safavigerdini Kaveh2ORCID,Hajiloo Reza3,Salarieh Hassan4ORCID

Affiliation:

1. Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA

2. Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO, USA

3. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada

4. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

This article presents an adaptive nonlinear delayed feedback control scheme for stabilizing the unstable periodic orbit of unknown fractional-order chaotic systems. The proposed control framework uses the Lyapunov approach and sliding mode control technique to guarantee that the closed-loop system is asymptotically stable on a periodic trajectory sufficiently close to the unstable periodic orbit of the system. The proposed method has two significant advantages. First, it employs a direct adaptive control method, making it easy to implement this method on systems with unknown parameters. Second, the framework requires only the period of the unstable periodic orbit. The robustness of the closed-loop system against system uncertainties and external disturbances with unknown bounds is guaranteed. Simulations on fractional-order duffing and gyro systems are used to illustrate the effectiveness of the theoretical results. The simulation results demonstrate that our approach outperforms the previously developed linear feedback control method for stabilizing unstable periodic orbits in fractional-order chaotic systems, particularly in reducing steady-state error and achieving faster convergence of tracking error.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3