Control of the 2-degree-of-freedom servo system with iterative feedback tuning

Author:

Zhao Jiangbo1,Feng Wei1,Wang Junzheng1

Affiliation:

1. State Key Laboratory of Complex System Intelligent Control and Decision, School of Automation, Beijing Institute of Technology, Beijing, PR China

Abstract

In this article, the controller parameter tuning method of a large inertia 2-degree-of-freedom motion mechanism is presented. The proportional–integral controller is adopted to implement the system control. For the reason of load coupling of the two freedoms, fixed proportional–integral parameters cannot always get satisfied control performance. Based on this problem, the iterative feedback tuning method is applied to tune the controller parameters. This method makes the system output error decrease along the negative gradient direction, and the system cost function will reach local minimum after a few iterations. In order to improve the convergence speed of the iterative process, a gold ratio–based method is proposed to speed up the convergence of the iteration process. The simulation and comparison experiments are performed on the azimuth freedom, and the results show that the iterative feedback tuning method can achieve much higher control performance compared to classical tuning method, and it has the similar effect to the adaptive robust method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust model-free adaptive iterative learning control for an autonomous bus trajectory tracking system;Science Progress;2024-04

2. Parameter optimization design of MFAC based on Reinforcement Learning;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

3. Adaptive Feedforward Feedback Iterative Learning Control Method and Its Application to Autonomous Bus;2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3