LQR force command planning–based sliding mode control for active suspension system

Author:

Zhao Zankui1ORCID,Wang Chengwen12,Zhao Junqi1,Du Wei1

Affiliation:

1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, China

2. Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems, Jincheng Research Institute of Optomechatronics, Jincheng, China

Abstract

In this article, a linear quadratic regulator (LQR)-based sliding model control strategy was proposed for the commercial vehicle seat suspension system. First, the multiple degrees of freedom mechanical dynamics model of a quarter suspension system was built. Then, the LQR force command planner was designed based on mechanical dynamics to ensure driver comfort. Second, considering the mechanical dynamics augmented with hydraulic actuator dynamics, a proportional-integral sliding mode control strategy was developed to track the reference force, which was calculated by the LQR force command planner in real time. Taking the problems of noise disturbances and unavailable full states feedback into consideration, the Kalman filter and tracking differentiator were designed and integrated into the control algorithm. Finally, the quarter suspension AMESim model was built, and the proposed control strategy was implemented and verified in the AMESim-Matlab/Simulink co-simulation environment. Comprehensive simulations were carried out. The simulation results, both from time domain and frequency domain perspective, indicated that the seat ride comfort can be effectively improved with the proposed method.

Funder

the Key Research and Development (R&D) Program of Shanxi Province

General project of Shanxi Natural Science Foundation

the Shanxi Scholarship Council of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3