Event-triggered discrete extended state observer–based model-free controller for quadrotor position and attitude trajectory tracking

Author:

He Dingxin1ORCID,Wang Haoping1ORCID,Tian Yang1,Zimenko Konstantin2

Affiliation:

1. School of Automation, Nanjing University of Science & Technology, Nanjing, China

2. ITMO University, Saint Petersburg, Russia

Abstract

In this article, an event-triggered discrete extended state observer–based model-free controller is developed for the position and attitude trajectory tracking of a quadrotor with uncertainties and external disturbances. The referred event-triggered discrete extended state observer–based model-free controller is composed of two event-triggered mechanisms, ultra-local model-based discrete extended state observer and proportional-derivative sub-controller. To reduce system output signal transmission, the event-triggered mechanism of output signal which owns dynamic and static threshold is designed. Based on event-triggered output signals, the discrete extended state observer is constructed to obtain the estimations of state values which are utilized as controller’s variables and to compensate for the lumped disturbances. The proportional-derivative sub-controller is adopted to guarantee the convergence of trajectory tracking error. To decrease control input signal transmission, the event-triggered mechanism of input signal that processes static threshold is constructed. Moreover, the stability analysis of overall quadrotor system with the proposed control strategy is investigated using Lyapunov theorem and the Zeno behavior is avoided. Finally, corresponding control scheme for quadrotor system is structured and the numerical comparative simulation and co-simulation experiment are given to demonstrate the effectiveness and performance of the proposed approach.

Funder

National Natural Science Foundation of China

international science and technology cooperation programme

national natural science foundation of china

Intergovernmental international science and technology innovation cooperation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3