Affiliation:
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
Abstract
A dynamic generalized regression neural network model based on inverse Duhem operator is proposed to characterize the rate-dependent hysteresis in piezoelectric actuators. As hysteresis is multi-valued mapping, and traditional neural network can only model the system with one-to-one mapping. An inverse Duhem operator is proposed to extract the dynamic property of the hysteresis. Moreover, it can transform the multi-valued mapping of the hysteresis into a one-to-one mapping to suit the input of neural network. In order to compensate the effect of the hysteresis in piezoelectric actuator, the adaptive sliding mode controller with a feedforward hysteresis compensator is developed for the tracking control of the piezoelectric actuator. Experimental results demonstrate superior tracking performance, which validate the practicability and effectiveness of the presented approach.
Funder
zhejiang province public welfare technology application research project
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献