A precision-drive hysteresis model with an equal-density weight function for GMA feedforward compensation

Author:

Xiao Kun1,Wang Zhiwen1,Wang Hongyuan1,Sun Jie1,Zheng Yelong1ORCID,Huang Yinguo1

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Abstract

Giant magnetostrictive actuators (GMAs) are a widely used type of micro-nano actuator, and they are greatly significant in the field of precision engineering. The accuracy of a GMA often depends on its hysteresis model. However, existing models have some limitations, including the difficulty of identifying their parameters and the tradeoff between the quantity of modeling data required and the level of precision achieved. To solve these problems, in this paper, we propose a Preisach inverse model based on equal-density segmentation of the weight function (E-Preisach). The weight function used to calculate the displacement is first discretized. Then, to obtain a finer weight distribution, the discretized geometric units are uniformly divided by area. This can further minimize the output displacement span, and it produces a higher-precision hysteresis model. The process of parameter identification is made easier by this approach, which also resolves the difficulty of obtaining high precision using a small amount of modeling data. The Preisach and the E-Preisach inverse models were investigated and compared using experiments. At frequencies of 1 and 5 Hz, it was found that the E-Preisach inverse model decreases the maximum error of the feedforward compensation open-loop control to within 1 µm and decreases the root-mean-square error in displacement to within 0.5 µm without the need to increase the number of measured hysteresis loops. As a result, the E-Preisach inverse model streamlines the structure of the model and requires fewer parameters for modeling. This provides a high-precision modeling method using a small amount of modeling data; it will have applications in precision engineering fields such as active vibration damping and ultra-precision machining.

Publisher

AIP Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3