Affiliation:
1. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
In this article, a novel performance-seeking control method based on deep neural network and interval analysis is proposed to obtain a better engine performance. A deep neural network modeling method which has stronger representation capability than conventional neural network and can deal with big training data is adopted to establish an on-board model in the subsonic and supersonic cruising envelops. Meanwhile, a global optimization algorithm interval analysis is applied here to get a better engine performance. Finally, two simulation experiments are conducted to verify the effectiveness of the proposed methods. One is the on-board model modeling which compares the deep neural network with the conventional neural network, and the other is the performance-seeking control simulations comparing interval analysis with feasible sequential quadratic programming, particle swarm optimization, and genetic algorithm, respectively. These two experiments show that the deep neural network has much higher precision than the conventional neural network and the interval analysis gets much better engine performance than feasible sequential quadratic programming, particle swarm optimization, and genetic algorithm.
Funder
six talent peaks project in jiangsu province
national natural science foundation of china
Research Funds for Central Universities
Qing Lan and 333 Project
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献