Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter

Author:

Aboudonia Ahmed1,El-Badawy Ayman2,Rashad Ramy1

Affiliation:

1. Mechatronics Department, Faculty of Engineering and Material Science, German University in Cairo, Egypt

2. Mechanical Engineering Department, Al-Azhar University and German University in Cairo, Egypt

Abstract

Feedback linearization is widely used for the purpose of quadrotor control. Unfortunately, feedback linearization is highly sensitive to any quadrotor model uncertainties. This paper provides feedback linearization-based control with robustness by integrating it with a disturbance observer. The proposed approach maintains the simplicity of the control structure without ignoring the high nonlinearities existing in the model by considering these nonlinearities as disturbances to be attenuated by the disturbance observer. Thus, the requirement to include complex high-order Lie derivatives in the controller is eliminated even in the presence of the high nonlinearities. Simulation results show that the proposed controller successfully force the quadrotor to follow the desired position and heading trajectories in the presence of different types of disturbances including ignored nonlinear dynamics, wind disturbances and partial actuator failure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3