Equation-based domain knowledge utilization into neural network structure and learning

Author:

Kulkarni Shrinivas1ORCID,Guha Anirban2

Affiliation:

1. Eaton India Innovation Center, Pune, India

2. Indian Institute of Technology Bombay, Mumbai, India

Abstract

The use of neural networks as black boxes, though useful for modeling complicated industrial systems, has some limitations. No physical interpretation can be given to sections of the trained network. Incorporation of domain knowledge into neural network attempts to address this lacuna. Most of the attempts in this direction have been in the area of data classification in which sub-classes created with the help of domain experts have led to better neural networks. This work attempts to incorporate domain knowledge into the structure of a neural network for solving a regression problem—that of a piston pump leakage prediction. It shows a way in which prior knowledge about subsystems, in the form of equations, can be used to create a neural network for modeling the entire system. This approach significantly outperforms a traditional feed forward neural network. As a key contribution, this approach allows physical interpretation of the neurons which can aid in troubleshooting and anomaly detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Reference38 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge management of product design: A requirements-oriented knowledge management framework based on Kansei engineering and knowledge map;Advanced Engineering Informatics;2022-04

2. Prediction of cold rolling gas based on EEMD-LSTM deep learning technology;Assembly Automation;2021-12-01

3. An accurate and efficient machine fault diagnosis approach using a recurring broad learning model;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2020-07-25

4. Optimal replacement strategy of obsolete industrial components under fuzzy data;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2019-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3