Prediction of cold rolling gas based on EEMD-LSTM deep learning technology

Author:

Zhai Hui,Xiong Wei,Li Fujin,Yang Jie,Su Dongyan,Zhang Yongjun

Abstract

Purpose The prediction of by-product gas is an important guarantee for the full utilization of resources. The purpose of this research is to predict gas consumption to provide a basis for gas dispatch and reduce the production cost of enterprises. Design/methodology/approach In this paper, a new method using the ensemble empirical mode decomposition (EEMD) and the back propagation neural network is proposed. Unfortunately, this method does not achieve the ideal prediction. Further, using the advantages of long short-term memory (LSTM) neural network for long-term dependence, a prediction method based on EEMD and LSTM is proposed. In this model, the gas consumption series is decomposed into several intrinsic mode functions and a residual term (r(t)) by EEMD. Second, each component is predicted by LSTM. The predicted values of all components are added together to get the final prediction result. Findings The results show that the root mean square error is reduced to 0.35%, the average absolute error is reduced to 1.852 and the R-squared is reached to 0.963. Originality/value A new gas consumption prediction method is proposed in this paper. The production data collected in the actual production process is non-linear, unstable and contains a lot of noise. But the EEMD method has the unique superiority in the analysis data aspect and may solve these questions well. The prediction of gas consumption is the result of long-term training and needs a lot of prior knowledge. Relying on LSTM can solve the problem of long-term dependence.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference25 articles.

1. Real-time safety monitoring in the induction motor using deep hierarchic long short-term memory;The International Journal of Advanced Manufacturing Technology,2018

2. Reliable state of health condition monitoring of li-ion batteries based on incremental support vector regression with parameters optimization;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020

3. An improved neural network-based approach for short-term wind speed and power forecast;Renewable Energy,2017

4. Position analysis of brushless direct current motor using robust fixed order H-infinity controller;Assembly Automation,2020

5. One dimensional convolutional neural network architectures for wind prediction;Energy Conversion and Management,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3