Affiliation:
1. College of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
Abstract
The traditional deep-water manipulators have several problems to work in confined spaces, such as large volume, complex structure, and inability. To solve these problems, a novel cable-driven snake-like manipulator robot for deep-water is proposed. In this study, the structure design of the cable-driven snake-like manipulator robot is first introduced. Then, we establish the kinematics model of the proposed cable-driven snake-like manipulator robot, which includes three parts: motor-cable kinematics, cable-joint kinematics, and joint-end kinematics. Especially, a tip-following algorithm (Supplemental Material) is presented to fit the confined and complicated underwater scenarios. Furthermore, a kinematics control strategy based on fuzzy PID controller is presented to reduce the tracking error caused by transmission mechanism, and the simulation of the cable-driven snake-like manipulator is carried out based on the MATLAB. The results demonstrate that the tracking error is less than 0.04 mm, which shows the proposed control strategy is effective.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献