High dynamic digital control for a hydraulic cylinder drive

Author:

Kogler Helmut1ORCID

Affiliation:

1. Linz Center of Mechatronics GmbH, Linz, Austria

Abstract

The control of hydraulic cylinders with digital hydraulic valves is often based on modulation principles like pulse-width modulation, pulse-code modulation, or pulse–frequency control. In many cases the dynamic drive performance using such control strategies is far below the natural dynamics of the system, since closed-loop controllers demand a certain phase margin for stability. However, some drive applications require a high dynamic response, which cannot be realized with common closed-loop concepts. In this article the design of a bang–bang feedforward control with regard to the dynamics of a hydraulic cylinder drive in accordance with the theory of optimal control is presented. The control achieves the maximum physical dynamic response and no remaining oscillations after the movement, which forms the basis of a high dynamic three-level position control for hydraulic drives. Furthermore, the influence of valve dynamics and pipe line dynamics with regard to the design of the digital valve control are considered by simulations.

Funder

Austrian COMET-K2 programme of the Linz Center of Mechatronics

Austrian federal government and the federal state of Upper Austria

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3