Dynamic Response Analysis of the Bi-Tandem Axial Piston Pump with Dual-Loop Positive Flow Control under Pressure Disturbance

Author:

Sun Zhiyuan1ORCID,Zeng Qingliang12ORCID,Wan Lirong1,Xiao Yuanjiang1

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Information Science and Engineering, Shandong Normal University, Jinan 250358, China

Abstract

The bi-tandem axial piston pump is an indispensable powerhouse in high-pressure and high-power engineering hydraulic systems, with its output flow response characteristics under pressure disturbance exerting a significant influence on the working process of double pumps. Unfortunately, the stability of the original single-loop mechanical–hydraulic servo control system is sensitive to unpredictable interference. To alleviate this quandary, this paper proposes a dual-loop positive flow control method for the flow control of the bi-tandem axial piston pump, establishes a mathematical model of the bi-tandem axial piston pump with dual-loop positive flow control, and establishes a simulation model based on Simulink. The validity of the model is verified by experiments. The performance advantages of the dual-loop positive flow control method relative to the single-loop positive flow control method are analyzed. The results show a faster response speed and smaller steady-state error with the dual-loop method, which performs better than the original single-loop positive flow control. Furthermore, the study examines the influence of different forms, degrees, and directions of pressure disturbance on the dynamic response characteristics of the bi-tandem axial piston pump. Symmetric pressure disturbance results in an increase in the maximum relative error of the output flow proportional to its degree. Notably, the influence of asymmetric pressure disturbance on the output flow of the double pumps possesses characteristics of a superimposable nature, and the steady-state value of the output flow is highly dependent on superimposed pressure disturbance and less affected by the action time point of asymmetric pressure disturbance. Further, the unloading pressure disturbance exerts less influence on the system compared to the loading pressure disturbance. This paper provides valuable insights into improving the response speed and control accuracy of bi-tandem axial piston pumps equipped with positive flow control.

Funder

National Natural Science Foundation of China

Shandong Province Key Research and Development Program

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3