A study on multi-domain modeling and simulation of precision high-speed servo numerical control punching press

Author:

Xu Teng1ORCID,Xia Qin-Xiang1,Long Jinchuan1,Long Xiaobin2

Affiliation:

1. Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

2. Zhongshan OMS Industrial Co., Ltd, Zhongshan, China

Abstract

The multi-domain modeling and simulation of the precision high-speed punching press was carried out using the software SimulationX in this article. The key technical problems of the multi-domain modeling, such as the establishment of the sub-systems of mechanics with accurate structures and dimensions, improvement of modeling accuracy and simulation efficiency by dividing and dealing with components in group and import of the displacement-depended stamping forces on the stamping dies, have been resolved to establish the integral multi-domain model, which contains sub-systems of mechanics, hydraulic and servo driven of the complete punching press. Vibration quantity of the punching press was predicted through simulation, and validity of the multi-domain model was confirmed by experimental measurement. The vibration reduction in the punching press based on the topology optimization of the slider and design of rotational speed variation curve of the servo motor were investigated. The results show that through topology optimization, the mass of the slider could be decreased under the premise of guaranteeing the structural strength, by which the vibration quantity of the punching press can be decreased; rotational speed of the servo motor could be decreased during the stamping period by designing the rotational speed variation curve, which leads to a decrease in acceleration and vibration of the slider during that period, with which the forming precision can be guaranteed.

Funder

Precision Equipment and Manufacturing Technology

Critical technology and product development of the precision high speed servo automatic NC punch

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3