Affiliation:
1. Department of Fluid Transmission and Control, School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, China
Abstract
Electro-hydraulic friction load simulator is able to simulate load for detecting and estimating the actuator system, which requires an ability to track accurately a given signal with high frequency. In this article, a flatness-based adaptive nonlinear controller is proposed for electro-hydraulic friction load simulator with parameter uncertainties to improve torque-tracking performance. The proposed control consists of state feedback, desired input feedforward and adaptive law to yield a stable closed-loop control system. State feedback is designed to stabilize the electro-hydraulic friction load simulator and achieve robustness against disturbances. Desired input feedforward is designed based on flatness property. And, it can enhance bandwidth by model compensation. Furthermore, in order to solve the problem of parameter uncertainty, adaptive law is adopted in this controller. The proposed controller theoretically guarantees asymptotic tracking performance in the absence of parameter uncertainties. High-accuracy tracking performance of the proposed control strategy is verified by experiments.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献