Affiliation:
1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Abstract
For the 2–degrees of freedom position tracking problem of the robotized hydraulic-driven roadheader with high nonlinearities and strong uncertainties, a practical disturbance observer–based backstepping sliding cascade control method together with an adaptive compensator is proposed and investigated. The presented methodology mainly includes a continuous nonsingular fast terminal sliding mode with the backstepping technique and the power reaching law with time-varying coefficients used to achieve satisfactory performance against the multi-source disturbances, two disturbance observers used to approximately estimate the unknown dynamics in the mechanical and hydraulic subsystem, respectively. Simultaneously, a continuous robustifying term is also utilized to compensate for the residual disturbances and enhance the robustness. The presented control method doesn’t need the precise model thanks to the auxiliary disturbance observer, and can ensure fast convergence and small tracking error thanks to the backstepping sliding cascade control and the adaptive robust compensator. Based on Lyapunov theory, stability of the overall closed-loop system is proved rigorously, and asymptotically bounded tracking performance of the robotic manipulator is guaranteed. Finally, 2–degrees of freedom trajectory tracking experiments are conducted, and comparative results effectively verify the superiorities of the proposed method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献