Complex stiffness model of an air spring with auxiliary chamber considering inertial effects of gas in connecting pipeline

Author:

Yin Zhihong1ORCID,Jiang Jian1,Shangguan Wen-Bin1ORCID

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, PR China

Abstract

In this paper, an analytical complex stiffness model of an air spring system with auxiliary chamber is established considering inertial effects of gas in connecting pipeline. The established model can reflect the resonance phenomenon of the dynamic stiffness curve due to the gas inertia in connecting pipeline as well as the amplitude dependent characteristic of the dynamic stiffness. To obtain the key parameters of the model, a finite element model of the air spring system and a CFD model of the pipeline are developed respectively, then relative simulation analyses are operated. The complex stiffness of air spring system is calculated and investigated with the proposed model. The calculation results are compared with that of the experiments and the existing complex stiffness model. It shows that the calculation results of the proposed model agree well with the experimental results. The proposed model is especially suitable for air spring systems with large pipeline gas inertia and low pipeline damping. Moreover, it is deduced that when the inertial effect of gas in the pipeline decreases and the damping of the pipeline increases, the proposed model in this paper can be transformed into the existing model. Thus, this new complex stiffness model has a wide application range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Evolution of Vehicle Pneumatic Vibration Isolation: A Systematic Review;Shock and Vibration;2023-09-29

2. Physical-Neural Network Hybrid Modeling Method for Dynamic Characteristics of Air Springs with Auxiliary Chambers;SAE Technical Paper Series;2023-04-11

3. A universal dynamical model of dual-chamber air springs with experimental validation;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3