Effective measures to improve thermal efficiency of medium-sized diesel engine in practical application: Energy-exergy analysis and test verification

Author:

Huang Haozhong1ORCID,Wang Yi1,Zhou Chengzhong2,Guo Xiaoyu1,Xing Kongzhao1

Affiliation:

1. College of Mechanical Engineering, Guangxi University, Nanning, China

2. Guangxi Yuchai Machinery Co., Ltd, Yulin, China

Abstract

As the fourth stage of China’s fuel consumption limits for heavy commercial approaches, engine manufacturers are facing huge challenges. Here, the impact of different strategies on brake thermal efficiency (BTE) was studied through experiments and simulations, and the main energy loss items were obtained based on energy and exergy analysis. According to experimental results, the removal of exhaust gas recirculation (EGR) mainly reduced exhaust losses, resulting in a 0.5% increase in BTE at 1200 r/min. Turbocharger scheme 2, with a high flow rate and high efficiency, was beneficial in reducing pumping losses. Owing to consistent brake power, simultaneously increasing the compression ratio and peak firing pressure can reduce the exhaust losses and combustion irreversibility. When fuel injection quantity was constant, the use of high flow injectors could advance CA50, thereby increasing output power and reducing exhaust losses. Finally, the actual development of the new engine was completed, and the test results showed that the maximum BTE reached 46.9%, and CO and soot emissions were reduced by 74.2% and 78.3%, respectively. Therefore, for medium-sized diesel engines, adopting the non-EGR route, using high flow turbochargers and injectors, and increasing compression ratio can effectively improve BTE and reduce carbon emissions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3