A lightweight deep learning-based method for health diagnosis of internal combustion engines on an internet of vehicles platform

Author:

Dou Quanli123,Luo Hanbin1,Zhang Zhenjing23,Song Yedong23,Chu Shilong4,Mao Zhiwei4ORCID

Affiliation:

1. Department of Construction Management, School of Civil and Hydraulic Engineering, Huazhong University of Science &Technology, Wuhan, Hubei, China

2. State Key Laboratory of Engine and Powertrain System, Weifang, China

3. Weichai Power Co., Ltd., Weifang, China

4. Key Laboratory of Engine Health Monitoring-Control and Networking of Ministry of Education, Beijing University of Chemical Technology, Beijing, China

Abstract

The health status diagnosis method for internal combustion engines based on deep learning mainly focuses on the research of vibration signals, but the hardware cost required for vibration signal monitoring is expensive, and the model is also complex, which is not suitable for vehicle internal combustion engines. The Internet of Vehicle (IoV) platform provides a lot of thermal parameter data that can reflect the status and performance of internal combustion engines. However, there is currently insufficient study on thermal parameters, and the in-depth fusion analysis of multiple parameter associations has not been realized. At the same time, considering the numerous thermal parameters of internal combustion engines and the complex relationship between them. This article proposes a deep learning lightweight diagnosis method based on thermal parameters to explore the important value of thermal parameters in the health diagnosis of internal combustion engines. Firstly, a parameter grouping model based on Mutual information is proposed to realize the automatic grouping of parameters, reduce the complexity of the model, and realize lightweight processing. Then, based on grouping, a deep learning health status diagnosis model based on denoising autoencoder-attention mechanism-bidirectional gated recurrent unit (DAE-AM-BiGRU) is proposed to achieve the purpose of data dimensionality reduction, noise reduction, and obtaining key features and timing relations. Finally, a simulation model of an internal combustion engine was constructed using GT-POWER simulation software to obtain simulation data of thermal parameters, verifying the effectiveness of the proposed method.

Funder

Open Project of State Key Laboratory of Engine and Powertrain System

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3