Slip ratio estimation of electric wheels based on tire force and road conditions

Author:

Li Hang1ORCID,Hu Zunyan1,Hu Jiayi1ORCID,Li Jianqiu1,Li Jingkang1,Li Yuanyuan1,Xu Liangfei1,Liu Shucheng1,Ouyang Minggao1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China

Abstract

The independently controlled electric wheels of distributed drive vehicles provide faster and more accurate actuators for vehicle slip ratio control. Meanwhile, the estimation of the slip ratio of electric wheels has been of vital importance for the dynamics control of distributed drive electric vehicles. However, the conventional slip ratio estimation method is hard to accurately estimate the slip ratio under steering conditions without multiple observations, increasing the cost and introducing errors. Considering that the output torque and motor rotation rate of electric wheels can be accurately collected, the novel slip ratio estimation method takes advantage of the signals of the electric wheels and requires fewer vehicle sensors. Based on the torsional vibration model of electric wheel, the slip ratio estimation method was proposed and validated by simulations and experiments. With the drum dynamometer, the slip ratio estimation method was applied to a single electric wheel for testing, proving the feasibility and accuracy of the proposed method. The slip ratio estimation was finally applied to a fuel cell heavy truck for road tests, of which the results show that the error index is reduced from 0.0152 to 0.0064 compared to the conventional slip ratio estimation method, confirming the good estimation performance achievable via the proposed method.

Funder

Beijing Municipal Science and Technology Commission

Young Elite Scientists Sponsorship Program by CAST

national key research and development program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Investigation in the Control Effectiveness of the Driving Wheel Slip Prevention System of a Diesel Engine Dump Truck;SAE International Journal of Vehicle Dynamics, Stability, and NVH;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3