Affiliation:
1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China
Abstract
This paper puts forward a modified skyhook control strategy for the electromagnetic suspension to improve the dynamic performance of the vehicle body and coordinate the wheel vibration simultaneously. The influence of control parameters (skyhook damping coefficient and passive damping coefficient) on the vehicle dynamic performances is analyzed, and the optimal values are determined. In addition, a new type of hybrid electromagnetic actuator which integrates a linear motor and a hydraulic damper is proposed to guarantee the reliability of electromagnetic suspension, and implement the modified skyhook control strategy. The structure parameters of the linear motor are optimized when the hydraulic damper is taken as a design basis, and the prototype is produced. Since the hybrid structure exactly matches the “hybrid damping” of the modified skyhook control strategy, the linear motor simply imitates the skyhook damping, which reduces the power demand compared with the electromagnetic suspension only with a linear motor. Then, the double loop control system for the hybrid electromagnetic actuator is designed. The external loop with a combined filter is utilized to obtain the body absolute velocity for the desired skyhook damping force, and the internal loop controls the linear motor to track the desired force with current hysteresis control. Finally, a comparative bench test is conducted, and the test results verify the effectiveness and control effect of hybrid electromagnetic actuator.
Funder
Key Research and Development Program of Zhenjiang
National Natural Science Foundation of China
major basic research project of the natural science foundation of the jiangsu higher education institutions
jiangsu provincial key research and development program
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献