Vibration analysis and adaptive model predictive control of active suspension for vehicles equipped with non-pneumatic wheels

Author:

Liu Wei12ORCID,Wang Ruochen1ORCID,Rakheja Subhash3,Ding Renkai4,Meng Xiangpeng4,Sun Dong1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

3. Zhengzhou University of Light Industry, Zhengzhou, China

4. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China

Abstract

In this paper, an adaptive controller is proposed for an active suspension system to achieve optimal compromise performance for vehicles equipped with non-pneumatic wheels under different road conditions. Firstly, the effective vertical stiffness of the non-pneumatic wheel (NPW) was identified through the static force-deflection tests. Then, the effect of the variations in NPW stiffness and mass on the vibration responses was investigated using a quarter-vehicle model. In order to coordinate the ride comfort and handling performance of the vehicle for different road excitations, an adaptive controller was synthesized using the model predictive control (MPC) theory together with an H state observer. The control gains for different control objectives were determined using a genetic algorithm (GA). Simulations indicate that the proposed controller can adapt to different road excitations and effectively enhance the dynamic performance of the vehicle. Specifically, by applying adaptive control, the root-mean-square (RMS) value of sprung mass acceleration (SMA) and the dynamic wheel load (DWL) coefficient are reduced by 19.4% and −9.3% on Class B roads and 12.4% and 3.8% on Class C roads, respectively, which is superior to the modified skyhook control (19.4% and −11.8% on Class B roads, and 19.3% and −12.3% on Class C roads). The effectiveness of simulation results was subsequently verified through hardware-in-the-loop experiments.

Funder

National Natural Science Foundation of China

Natural Science Research Project of Jiangsu

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3