Optimization and experimental analysis of a cost-effective magneto-rheological (MR) fluid for application in semiactive suspension of a passenger van

Author:

Jamadar Mohibb e Hussain1,Devikiran Pinjala1,Kumar Hemantha1ORCID,Joladarashi Sharnappa1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka, India

Abstract

The study presented in this article attempts to determine the optimal composition of iron particles in the MR fluid for vehicular application based on the size of the particles, the simulation response of a test vehicle model, and the cost of the fluid. The MRF samples with two different-sized particles in varying compositions are prepared and characterized on a rheometer. The performance of each MRF sample in the semiactive suspension of a test vehicle is determined by simulating its full car model on a random road. The response of the vehicle model during simulation, the size of the particles, the volume fraction of the particles in the carrier fluid, and the fluid’s calculated cost are input for the Response surface optimization technique. The optimization results revealed that the MR fluid with large-sized particles in a 25% volume fraction would be suitable for the said application. Moreover, it was found that the rheological performance of the optimized MR fluid was better than the commercial MR fluid. The performance of the optimized fluid in a MR damper was experimentally evaluated against the stock passive damper of the test vehicle. The results of the experiment on the test vehicle showed that the MR damper improved the test vehicle’s ride comfort by 36.58% over a speed bump and 11.3% on an off-road test track. The road handling was also improved by 45% over a speed bump and 46% over the test track.

Funder

Ministry of Road Transport and Highways, Government of India

Ministry of Education, India

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3