RHEOLOGY OF MAGNETORHEOLOGICAL FLUIDS: MODELS AND MEASUREMENTS

Author:

GINDER J.M.1,DAVIS L.C.1,ELIE L.D.1

Affiliation:

1. Research Laboratory, Ford Motor Company, 20,000 Rotunda Drive, M.D. 3028 SRL, Dearborn, MI 48121–2053, U. S.A.

Abstract

Numerical and analytical models of magnetorheological fluid phenomena that account explicitly for the effects of magnetic nonlinearity and saturation are described. Finite-element analysis was used to calculate the field distribution in chains of magnetizable particles. The field-dependent stress required to shear the chains was then obtained using the Maxwell stress tensor. Three regimes are identified: at low applied fields, the stress increase quadratically, as expected from linear magnetostatics. In intermediate fields, the contact or polar regions of each particle saturate, reducing the rate of increase of the stress with increasing field. At high fields, the particles saturate completely, and the stress reaches its limiting value. Approximate analytical expressions for the yield stress and shear modulus in these regimes are also derived. The predictions of these models are compared to magnetorheological experiments in the literature and from our laboratory. These models predict successfully the magnitude of the stresses as well as their field dependence. They also suggest that particles comprised of materials with higher saturation magnetizations will exhibit the largest magnetorheological effects.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3