Functionally graded adhesive joints under impact loads

Author:

dos Reis Mateus1ORCID,Carbas Ricardo21ORCID,Marques Eduardo2ORCID,da Silva Lucas1ORCID

Affiliation:

1. Departamento de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

2. Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial (INEGI), Porto, Portugal

Abstract

The industrial application of adhesively bonded joints has increased significantly in the last few years, driven by benefits such as the increased design flexibility, high vibration damping, the capability of joining dissimilar materials and the possibility of being used in combination with other joining techniques. However, the presence of stress concentrations at the overlap ends, especially in single lap joints, is one of the major issues associated with this technique, reducing joint strength. To solve this drawback, several techniques have been proposed, such as the use of adhesive spew, adhesive and adherend shaping, mixed adhesive joints and functionally graded adhesive joints. Functionally graded adhesive joints use an adhesive layer where the properties gradually change along the bondline, which results in the reduction of stress concentration peaks at the ends of the overlap, leading to a more uniform stress distribution. Multiple techniques for the creation of a functionally graded bondline have been presented in the literature, such as the inclusion of particles and nanoparticles and the use of functionally graded curing. However, the experimental works available in the literature only report results for quasi-static loading conditions, with the impact behaviour of these joints being an unstudied topic. The main objective of the present work is to fill this gap and study the mechanical behaviour of functionally graded adhesive joints loaded under impact conditions, using both experimental testing and numerical modelling. The results obtained show that, unlike what is found for quasi-static loads, graded joints do not offer significant strength improvement under impact loads. In contrast, energy absorption is significantly increased. This behaviour is explained by the completely different stress distribution on the adhesive layer for quasi-static and impact conditions, leading to the lower effectiveness of functionally graded adhesive joints under impact loads.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3