An integrated control strategy of path following and lateral motion stabilization for autonomous distributed drive electric vehicles

Author:

Zou Yuan12,Guo Ningyuan12ORCID,Zhang Xudong12ORCID

Affiliation:

1. National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China

Abstract

This article proposes an integrated control strategy of autonomous distributed drive electric vehicles. First, to handle the multi-constraints and integrated problem of path following and the yaw motion control, a model predictive control technique is applied to determine optimal front wheels’ steering angle and external yaw moment synthetically and synchronously. For ensuring the desired path-tracking performance and vehicle lateral stability, a series of imperative state constraints and control references are transferred in the form of a matrix and imposed into the rolling optimization mechanism of model predictive control, where the detailed derivation is also illustrated and analyzed. Then, the quadratic programming algorithm is employed to optimize and distribute each in-wheel motor’s torque output. Finally, numerical simulation validations are carried out and analyzed in depth by comparing with a linear quadratic regulator–based strategy, proving the effectiveness and control efficacy of the proposed strategy.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Graduate Technological Innovation Project of Beijing Institute of Technology

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3