Large-eddy simulations of diesel spray with a fine grid in a constant-volume vessel

Author:

Zhou Lei1,Luo Kai Hong2,Shuai Shi Jin3,Xie Mao Zhao4

Affiliation:

1. Center for Combustion Energy and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing, People’s Republic of China

2. Department of Mechanical Engineering, University College London, London, UK

3. Center of Combustion Energy and State Key Laboratory for Automotive Safety and Energy Conservation, Tsinghua University, Beijing, People’s Republic of China

4. School of Energy and Power Engineering, Dalian University of Technology, Dalian, People’s Republic of China

Abstract

In this study, a numerical methodology is developed to simulate liquid fuel spray, break-up and evaporation under high-temperature high-pressure diesel-engine-like conditions. First, the influence of the number of parcels on liquid fuel spray is studied using the Lagrangian parcel approach in an extended KIVALES code (the large-eddy simulation version of the KIVA code). In this study, Eulerian–Lagrangian momentum coupling is considered, incorporating the turbulent dispersion velocity in the spray source term. The study shows that a small number of parcels (about 5000 parcels) cannot represent the overall liquid fuel and droplet distributions. Increasing the number of parcels can enhance the vapour penetration length, but 40,000 parcels can effectively simulate the fuel spray with a fine grid of about 6 × 106 in our study. Use of the fine grid means that more information about the small-scale eddy structures can be obtained, especially in the vicinity of the nozzle. In addition, accurate large-eddy simulations are also used to study the influence of the swirl velocity. Subgrid turbulent dispersion associated with the subgrid turbulent kinetic energy is also found to be influential. Three zero-equation subgrid-scale models, namely the Smagorinsky model, the dynamic Smagorinsky model and the wall-adapting local-eddy-viscosity model, are compared in the study. In addition, the effect of incorporating an algebraic subgrid kinetic energy model into these subgrid-scale models is investigated. It is concluded that the algebraic subgrid kinetic energy model should be used with any of the above zero-equation subgrid-scale models to improve the quantitative predictions, even when the fine grid is used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3