Investigation of effects of tire contour on aerodynamic characteristics and its optimization

Author:

Zhang Lingxin12,Zhou Haichao12ORCID,Wang Guolin1,Li Huiyun1,Wang Qingyang3ORCID

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

2. AEOLUS Tyre Co. Ltd, Jiaozuo, China

3. China Automotive Engineering Research Institute Co. Ltd, Chongqing, China

Abstract

Reducing the aerodynamic drag is one of the most important approaches for the development of energy-saving and environment-friendly automobiles. The tire contour has a great influence on the aerodynamic characteristics of automobiles. The aim of this study is to investigate the influence of the tire contour design parameters on the aerodynamic characteristics around a closed wheel, and obtain the optimized tire contour to reduce the automobile aerodynamic drag. A passenger car tire 185/65R14 was selected to conduct the wind tunnel test, and the surface pressure coefficients were used to validate the simulation model established using the detached eddy simulation (DES) model. To decrease tire drag, and taking the upper sidewall height, the tread radii, the tread width, and the transition arc radius of the shoulder as four design variables of contour, a combination of the Latin hypercube experimental design, the Kriging surrogate model, and the adaptive simulated annealing (ASA) algorithm were used to optimize the tire contour design parameters. The changes of flow field around the tire, including the velocity, turbulent kinetic energy, and pressure field were compared and analyzed for further understanding of the drag reduction mechanism. It is found that the aerodynamic drag coefficient of the optimized tire is reduced by 14.5%, and the aerodynamic coefficient drag of the car using the optimized tire is reduced by 7%. The present results are expected to provide useful information for designing new tire structures and improving the aerodynamic performance of the automobile.

Funder

National Natural Science Foundation of China

national natural science foundation of china

postdoctoral research foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3