Load transient between conventional diesel operation and low-temperature combustion

Author:

Sarangi Asish K1,Garner Colin P1,McTaggart-Cowan Gordon P1,Davy Martin H1,Wahab Emad2,Peckham Mark3

Affiliation:

1. Loughborough University, Loughborough, Leicestershire, UK

2. Ford Motor Company, Basildon, Essex, UK

3. Cambustion Ltd, Cambridge, UK

Abstract

The operation of diesel low-temperature combustion engines is currently limited to low-load and medium-load conditions. Mode transitions between diesel low-temperature combustion and conventional diesel operation and between conventional diesel operation and diesel low-temperature combustion are therefore necessary to meet typical legislated driving-cycle load requirements, e.g. those of the New European Driving Cycle. Owing to the markedly different response timescales of the engine’s turbocharger, exhaust gas recirculation and fuelling systems, these combustion mode transitions are typically characterised by increased pollutant emissions. In the present paper, the transition from conventional diesel operation to diesel low-temperature combustion in a decreasing-load transient is considered. The results of an experimental study on a 0.51 l single-cylinder high-speed diesel engine are reported in a series of steady-state ‘pseudo-transient’ operating conditions, each pseudo-transient test point being representative of an individual cycle condition from within a mode transition as predicted by the combination of real-world transient test data (for fuelling and load) and one-dimensional transient simulations (for intake manifold pressure and exhaust gas recirculation rate). These test conditions are then established on the engine using independently controllable exhaust gas recirculation and boost systems. The results show for the first time that the intermediate cycle conditions encountered during combustion mode change driven by the load transient pose a significant operating challenge, particularly with respect to control of carbon monoxide, total hydrocarbon and smoke emissions. A split-fuel-injection strategy is found to be effective in mitigating the negative effects of the mode change on smoke emissions without significantly increasing oxides of nitrogen or decreasing fuel economy; however, unburned hydrocarbon emissions are increased. Additional experimental testing was also conducted at selected intermediate cycles to understand the sensitivity of key fuel injection parameters with the split-injection strategy on engine performance and emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference18 articles.

1. An experimental analysis of low-temperature and premixed combustion for simultaneous reduction of NOx and particulate emissions in direct injection diesel engines

2. Advanced compression-ignition engines—understanding the in-cylinder processes

3. Cong S. An experimental study of low temperature combustion in a diesel engine. PhD Thesis, Loughborough University, Loughborough, Leicestershire, UK, 2011.

4. Sarangi AK. Diesel low temperature combustion: an experimental study. PhD Thesis, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK, 2012.

5. Cycle-resolved measurements of in-cylinder constituents during diesel engine transients and insight into their impact on emissions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3