Autonomous overtaking decision and motion planning of intelligent vehicles based on graph convolutional network and conditional imitation learning

Author:

Lv Yanzhi1ORCID,Wei Chao12,Hu Jibin1,He Yuanhao1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Institute of Advanced Technology, Beijing Institute of Technology, Jinan, China

Abstract

To ensure safe overtaking of intelligent vehicles in dynamic interactive environments, this paper proposes an end-to-end learning method for autonomous overtaking based on Graph Convolutional Network (GCN) and Conditional Imitation Learning (CIL). This method completes the autonomous overtaking behavior by directly mapping the environmental perception data to the underlying vehicle control actions (e.g. throttle and steer angle). This method fully considers the influence of other vehicles’ driving behavior on the overtaking behavior of the ego vehicle. Firstly, the dynamic interactive environments information around the ego vehicle is aggregated in the form of graph-structured data, and the aggregated global features are used as the input of the GCN to output the optimal action instructions that the ego vehicle should take. Secondly, combined with CIL, the action instructions output by the GCN are used as high-level commands to guide CIL. Finally, combined with other perception data, the underlying control actions of the vehicle will be output by CIL to complete safe overtaking in dynamic interactive environments. The method proposed in this paper can effectively extract the global information of the driving scene and complete the collision-free autonomous overtaking behavior, which greatly improves the intelligence of the driving system. The feasibility of the method has been verified by experiments on the CARLA simulation platform. The experimental results prove that the performance of this method is better than that of the conventional end-to-end learning framework, and it has better success rate and generalization performance.

Funder

National Natural Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3