Experimental verification of active damping of powertrain vibrations with simple fuzzy logic compensation for time-varying control period

Author:

Yonezawa Heisei1ORCID,Yonezawa Ansei2ORCID,Hatano Takashi3ORCID,Hiramatsu Shigeki3ORCID,Nishidome Chiaki4ORCID,Kajiwara Itsuro1ORCID

Affiliation:

1. Division of Mechanical and Aerospace Engineering, Hokkaido University, Sapporo, Hokkaido, Japan

2. Division of Human Mechanical Systems and Design, Hokkaido University, Sapporo, Hokkaido, Japan

3. Mazda Motor Corporation, Aki-gun, Hiroshima, Japan

4. CATEC Inc., Tokyo, Japan

Abstract

To ensure comfortability and lifetime of components, transient vibrations in a vehicle powertrain must be suppressed. This study proposes a novel active vibration control strategy with straightforward fuzzy inference compensation for time-fluctuations of control periods of engines used as actuators. First, a model prediction algorithm including a sampled-data controller (SDC) is applied for addressing the maximal phase lag of the control input caused by the fluctuated control period. Fluctuated renewal timings of the control input that are deviated from those of the periodical operated SDC are defined by fuzzy sets. These fuzzy sets are expressed as “Nearly past timing” and “Nearly future timing.” Using a human-intuition-like fuzzy compensation with only four inference rules, unknown control inputs at fluctuated update timings are reasonably determined from such fuzzy sets and periodical control signals given by the SDC. Experiments using an actual test device are performed to investigate the damping performance of the proposed control scheme. The experimental tests demonstrate that the novel active damping strategy significantly reduces transient vibrations despite the fluctuated control period. Moreover, several different test conditions newly reveal the robustness of the fuzzy compensation against fluctuations of variable regions in the control periods.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3