Model reference adaptive LQT control for anti-jerk utilizing tire-road interaction characteristics

Author:

Yue Yunpeng1ORCID,Huang Ying1ORCID,Hao Donghao1,Zhu Guoming G2ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA

Abstract

Sudden vehicle propulsion torque change under tip-in/out maneuver often leads to low-frequency longitudinal vibration due to the flexibility in the half-shaft and tire slip, which greatly affects vehicle drivability. Note that the vibration frequency is between 1 and 10 Hz and is difficult to be absorbed by the vehicle mechanical system. To optimize the vehicle drivability under tip-in maneuver, an Adaptive Linear Quadratic Tracking (ALQT) anti-jerk traction controller is proposed in this paper. Based on the experimental data, a Carsim-Simulink co-simulation model is developed for assessing control performance. A control-oriented model, considering the nonlinear characteristics of the tire-road friction coefficient and slip ratio, is then proposed. A reference model with rigid axle is used to provide the equilibrium points and reference velocity trajectory. Jacobi linearization method is then used to linearize the model along the desired trajectory and a linear deviation model based on equilibrium points is obtained. Finally, the deviation compensation receding horizon LQT controller is designed along with the Kalman state estimation. The effectiveness of the designed controller is assessed via simulation studies under different road surfaces and compared with PID and LQR controllers. The LQT controller is able to track the desired velocity profile with minimum jerk while increasing road safety. Furthermore, the effect of LQT weighting coefficients under different road surfaces are discussed. Simulation results show that the ALQT controller is able to optimize vehicle drivability under different road surfaces and the weighting matrices shall be selected based on the road condition for optimal drivability.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3