Computer simulation of tire rolling resistance using finite element method: Effect of linear and nonlinear viscoelastic models

Author:

Rafei Mehdi1,Ghoreishy Mir Hamid Reza1ORCID,Naderi Ghasem1

Affiliation:

1. Iran Polymer and Petrochemical Institute, Tehran, Iran

Abstract

This research work is devoted to the study of the effect of model parameters and material properties on tire rolling resistance. The main goal of this research is to investigate and clarify the effect of the adopted hyper-viscoelastic material model on tire rolling resistance simulation results. For this purpose, some new approaches were used and current shortcomings were introduced. Computer simulations were carried out using Abaqus standard command line. Linear and parallel rheological framework viscoelastic models were implemented and rolling resistance of a passenger car tire was determined. Different parametric simulations were carried out and the results were compared with rolling resistance data obtained from experimental tests. The results revealed that the calculated rolling resistance force depends on the implemented viscoelastic model. The linear viscoelastic model could not accurately predict the trend of rolling resistance with variation of tire inflation pressure and applied load. On the contrary, parallel rheological framework could cope with this trend. The parallel rheological framework model is more sensitive to inflation pressure. However, the sensitivity of both models to applied vertical load is nearly the same. Although cornering simulation is independent of the adopted viscoelastic model, the type of viscoelastic model could affect the footprint contact pressure contour.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensitivity analysis of truck tire tread material properties for on-road applications;Transactions of the Canadian Society for Mechanical Engineering;2024-09-01

2. Prediction of rolling resistance and wheel force for a passenger car tire: A comparative study on the use of different material models and numerical approaches;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-05-10

3. Experimental characterization and constitutive modeling of thermoplastic polyurethane under complex uniaxial loading;Journal of the Mechanics and Physics of Solids;2024-05

4. Characterization of Viscoelastic Properties Considering the Nonrelaxation for Filled Rubber;Advances in Polymer Technology;2023-12-16

5. Research on simplified tire finite element modeling and simulation method;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3