Prediction of rolling resistance and wheel force for a passenger car tire: A comparative study on the use of different material models and numerical approaches

Author:

Fathi Haniyeh1ORCID,El-Sayegh Zeinab1ORCID,Ghoreishy Mir Hamid Reza2ORCID

Affiliation:

1. Department of Automotive and Mechatronics Engineering, Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON, Canada

2. Department of Rubber Processing and Engineering, Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran

Abstract

In this research, the characteristics of tire-road interaction of a 185/65R14 88H passenger car tire are investigated using the Finite Element Method in Abaqus commercial software. Moreover, the effect of various material models on tire performance is studied by implementing Visco-Hyperelastic, Parallel Rheological Framework, and Mullins effect. The novelty of this research is devoted to the development of the complex material models particularly considering the Mullins effect of the rubber compounds in the tire structure for the load-displacement criteria. For this purpose, a tire finite element model was generated using Abaqus/Standard command line in two different methods including an Arbitrary Lagrangian-Eulerian formulation for steady state rolling and implementing a pure Lagrangian approach for the transient dynamic analysis carried out implicit and explicit process respectively. Rolling resistance force was computed according to ISO 28580 with 210 kPa inflation pressure and 4155 N vertical load. The footprint test results were extracted in both static and transient dynamic analyses. Additionally, the wheel reaction force was predicted using an indirect method by extracting the tire-terrain contact patch reaction force in Abaqus/Explicit to observe the effect of the material convection along with stress softening phenomena of the rubber compounds of tire structure. In the post-processing analysis, the wheel reaction was filtered by implementing SAE60 filter to reduce the numerical noise in the final response.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3