An investigation of the melting process in a latent heat thermal energy storage system using exhaust gases of a spark ignition engine

Author:

Gürbüz Habib1ORCID,Ateş Durukan2

Affiliation:

1. Department of Automotive Engineering, Süleyman Demirel University, Isparta, Turkey

2. Graduate School of Natural and Applied Sciences, Süleyman Demirel University, Isparta, Turkey

Abstract

This article presents numerical and experimental results on the melting process of phase change material (PCM) in a latent heat storage (LHTES) system designed to recover the exhaust waste heat energy of a SI engine. In the LHTES system as PCM, three different paraffin waxes, commercially identified by the codes RT27, RT35, and RT55, were used. A closed-loop liquid circulation system with two heat exchangers was designed with one connected to the exhaust line of the SI engine and the other used in the melting of the PCMs. Water was used as the heat carrier fluid to melt the PCMs with hot exhaust gases. In addition, an experimental study was conducted on a single-cylinder, air-cooled SI engine fueled by gasoline with a stroke volume of 476.5 cm3, using RT55 in the designed LHTES system. By comparing the experimental results with the analysis results, the validity of the numerical model is ensured. According to the experimental temperature results in the center of the PCM container, the error of the numerical results is approximately 7.8%, while there is a difference of 0.4 units and 2.1% in terms of PCM heat exchanger efficiency and total heat energy stored, respectively. At the end of the analyses (1440th second), performed under the same boundary conditions in the LHTES system design, the storing heat energy is as follows: 1829 kJ by 88.8% liquid fraction for RT27, 1556 kJ by 86% liquid fraction for RT35, and 1843 kJ by 83.9% liquid fraction for RT55. In addition, the PCM heat exchanger efficiency for RT27, RT35, and RT55 is 11%, 9.4%, and 11.1%, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3