Experimental testing of an active control turbocharger turbine inlet equipped with a sliding sleeve nozzle

Author:

Pesiridis Apostolos1,Martinez-Botas Ricardo F1

Affiliation:

1. Mechanical Engineering Department, Imperial College London, UK

Abstract

The current paper presents the performance results of a variable-flow turbocharger turbine, called the active control turbocharger. Driven by the need to comply with increasingly strict emissions regulations as well as to strive continually for a better overall performance, the active control turbocharger is intended to provide an improvement over the current state-of-the-art turbochargers, namely the variable-geometry turbocharger. In this system, the nozzle is able to alter the throat inlet area of the turbine according to the variation in the energy (the pressure, temperature and mass flow) of each engine exhaust gas pulse with the intention of capitalising upon the untapped high-energy content of these pulses. The paper concentrates on the potential gain in the turbine expansion ratio and the eventual power output, as well as the corresponding effects on the efficiency as a result of operating the turbocharger in its active control mode compared with its operation as a standard variable-geometry turbocharger. This has meant actuation of the nozzle according to the pulse frequency, for different amplitudes and phase settings. The pulsating flow turbine power recovered increased by more than 15% compared with that from an equivalent variable-geometry turbocharger turbine, with the best phase offset between the minimum nozzle position and the start of the pulse (among the four tested) being 60°.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of simulation and experimental test results of the turbocharger temperature for two gasoline direct injection engines;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2022-08-04

2. A novel variable geometry turbine achieved by elastically restrained nozzle guide vanes. Part II: Experimental evaluation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-02-26

3. A Transient Model of a Variable Geometry Turbocharger Turbine Using a Passive Actuator;Arabian Journal for Science and Engineering;2021-01-03

4. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus;Energy Conversion and Management;2019-08

5. Variable nozzle turbocharger turbine performance improvement and shock wave alternation by distributing nozzle endwall clearances;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2018-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3