Decoupled disturbance rejection control for a turbocharged engine with a dual-loop exhaust gas recirculation system

Author:

Chen Song1,Yan Fengjun1

Affiliation:

1. Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

Abstract

Dual-loop exhaust gas recirculation with a variable-geometry turbocharger is an effective architecture for achieving desired intake manifold conditions, such as the temperature, the pressure and the oxygen concentration of the intake manifold, which have critical roles in advanced combustion mode control. However, the widely used control-oriented model is derived on the basis that the heat transfer between the pipes and the gas is negligible, which means that it suffers from non-trivial errors. Simulation results show that other error sources, including the volumetric efficiency and the orifice equation, are difficult to calibrate accurately and also cause significant errors in the system, particularly in transient situations. Modified active disturbance rejection control with an extended state observer is utilized to deal with the non-linear, multiple-input multiple-output system in this paper. It is demonstrated that the performance of active disturbance rejection control mainly depends on the performance of the extended state observer. In this paper, an extended state observer, which is based on the sliding-mode concept rather than the conventional linear observer, is introduced. By taking advantage of its strong robustness, the system is decoupled into three loops. For each loop, the internal errors and the external errors, including the modelling error and the coupling effects, are lumped into one term; they are then actively estimated and cancelled out by the control input in real time. The proposed method was validated using calibrated GT-Power model simulations.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lightweight deep learning-based method for health diagnosis of internal combustion engines on an internet of vehicles platform;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3