Trip-based optimization methodology for a rule-based energy management strategy using a global optimization routine: the case of the Prius plug-in hybrid electric vehicle

Author:

Mansour Charbel J1

Affiliation:

1. Industrial and Mechanical Engineering Department, School of Engineering, Lebanese American University, Byblos, Lebanon

Abstract

The fuel savings of plug-in hybrid electric vehicles strongly rely on the energy management strategy deployed onboard. For the current mass-produced plug-in hybrid electric vehicles, notably the Toyota Prius, the energy management strategy is a rule-based type, which is configured to optimize instantly the fuel consumption without taking into consideration the upcoming driving patterns of the given route schedule. Hence, it operates the vehicle first in the electric mode over a predefined all-electric range and then in the charge-sustaining mode. The energy consumption results are seen to be far from optimal when compared with global optimization strategies with prior knowledge of the scheduled route, such as dynamic programming. Hence, this study presents the methodology to optimize the rule-based energy management strategy for real-time implementation in the Prius plug-in hybrid electric vehicle, using dynamic programming as the global optimization routine. The optimization process takes into account the desired trip profile selected by the driver on the vehicle’s onboard Global Positioning System and linked to a traffic management system. A basic rule-based energy management strategy, which emulates the vehicle performance and the energy consumption, has been set first using on-road measurement data logging. As a second step, the dynamic programming optimization routine was applied to the model, assuming a repeated New European Driving Cycle as the scheduled route. The results obtained for the behaviours of the powertrain components under optimal control are evaluated and used to update the operating energy management rules of the basic controller. Finally, an optimized rule-based controller is proposed by coupling between the dynamic programming and the basic rule-based controller, followed by an evaluation of the energy consumption and the powertrain efficiency of the three investigated control strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference29 articles.

1. Fulton L, Cuenot F, Körner A. Technology roadmap: fuel economy of road vehicles. Report, International Energy Agency, Paris, France, 2012, pp. 17–19.

2. Transport Energy Efficiency

3. Fulton L, Ward J, Cazzola P, Technology roadmap: electric and plug-in hybrid electric vehicles. Report, International Energy Agency, Paris, France, 2011, pp. 14–22.

4. California Environmental Protection Agency, Air Resources Board. California exhaust emission standards and test procedures for 2009 through 2017 model zero-emission vehicles and hybrid electric vehicles, in the passenger car, light-duty truck and medium-duty vehicle classes. Document, California Environmental Protection Agency, Air Resources Board, Sacramento, California, USA, December2012.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3