Research on Energy Management Strategy of a Hybrid Commercial Vehicle Based on Deep Reinforcement Learning

Author:

Xi Jianguo1,Ma Jingwei1,Wang Tianyou1,Gao Jianping1

Affiliation:

1. Vehicle and Traffic Engineering College, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Given the influence of the randomness of driving conditions on the energy management strategy of vehicles, deep reinforcement learning considering driving conditions prediction was proposed. A working condition prediction model based on the BP neural network was established, and the correction coefficient of vehicle demand torque was determined according to the working condition prediction results. An energy management strategy and deep reinforcement learning were integrated to build an energy management strategy with deep reinforcement learning based on driving condition prediction. Simulation experiments were conducted according to the actual collected working condition data. The experimental results show that the energy management strategy, i.e., deep reinforcement learning considering working condition prediction, has faster convergence speed and more vital self-learning ability, and the equivalent fuel consumption per 100 km under different driving conditions is 6.411 L/100 km, 6.327 L/100 km, and 6.388 L/100 km, respectively. Compared with the unimproved strategy, the fuel economy can be improved by 3.18%, 3.08%, and 2.83%. The research shows that the energy management strategy, the deep reinforcement learning based on driving condition prediction, is effective and adaptive.

Funder

Central Plains Technological Innovation leading talents

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3