Detection of inappropriate working conditions for the timing belt in internal-combustion engines using vibration signals and data mining

Author:

Khazaee Meghdad1,Banakar Ahmad1,Ghobadian Barat1,Agha Mirsalim Mostafa2,Minaei Saeid1,Jafari Seyed Mohammad3

Affiliation:

1. Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran

2. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

3. Sharif University of Technology, Tehran, Iran

Abstract

Abnormal operating conditions for the timing belt can lead to cracks, fatigue, sudden rupture and damage to engines. In this study, an intelligent system was developed to detect and classify high-load operating conditions and high-temperature operating conditions for timing belts. To achieve this, vibration signals in normal operating conditions, high-load operating conditions and high-temperature operating conditions were collected. Time-domain signals were transformed to the frequency domain and the time–frequency domain using the fast Fourier transform method and the wavelet transform method respectively. In the data-mining stage, 25 statistical features were extracted from different signal domains. The improved distance evaluation method was adopted to select the best features and to reduce the input space for the classifier. Then, the signal features from the time domain, the frequency domain and the time-frequency domain were fed into an artificial neural network to evaluate the accuracy of this designed procedure for detecting inappropriate operating conditions for the timing belt. Based on all these features extracted from the signals in the time, frequency and time–frequency domains, the artificial neural network classifier detected and classified normal operating conditions, high-load operating conditions and high-temperature operating conditions with accuracies of 73.3%, 85% and 89.2% respectively. The classification accuracies using features selected by improved distance evaluation in the signals from the time, frequency and time–frequency domains were found to be 85%, 95.8% and 95% respectively. The results showed that the developed system was capable of detecting and classifying both the normal operating conditions and abnormal operating conditions for the timing belt. The results also suggested that a combination of signal processing and feature selection can significantly enhance the classification accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3