The effects of late intake valve closing and different cam profiles on the in-cylinder flow field and the combustion characteristics of a compression ignition engine

Author:

Kim Jaeheun1,Park Stephen Sungsan1,Bae Choongsik1

Affiliation:

1. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Abstract

The effects of the late-intake-valve-closing strategy and the different types of cam profile were observed in a single-cylinder compression ignition research engine. Experiments were carried out with two engine loads in naturally aspirated conditions. The late-intake-valve-closing strategy exhibited an improvement in the conventional trade-off between the nitrogen oxide emissions and the smoke emissions, as stated in other relevant work. However, it was found to be effective only for the premise that a sufficiently high mass of oxygen is trapped inside the cylinder, which ensured that the smoke emissions did not deteriorate with exhaust gas recirculation. This improvement in the trade-off decreased when the global air excess ratio inside the cylinder reached close to unity. The major disadvantages of the late-intake-valve-closing strategy included deterioration in the indicated mean effective pressure and the reduced mass of oxygen trapped inside the cylinder. The decrease in the indicated mean effective pressure was attributed to the reduction in the effective compression ratio followed by the reduction in the thermal efficiency in terms of the thermodynamics. The volumetric efficiency decreased owing to the backflow of the in-cylinder charge into the intake manifold. This implied that intake boosting was necessary not only to recover the efficiency to the original level but also to extend the engine load with a sufficient amount of air. The manipulation of cam profiles yielded further improvement in the trade-off relationship between the nitrogen oxide emissions and the smoke emissions. The flow field measurements obtained using particle image velocimetry and direct imaging of the combustion of the fuel spray demonstrated that the asymmetric cam profile effectively increased the swirl ratio inside the cylinder. Further improvement in the trade-off relationship between the nitrogen oxide emissions and the smoke emissions was realized because of this increased swirl intensity, which provided a better environment for air utilization. The smoke emissions were suppressed without a significant increase in the nitrogen oxide emissions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3