Numerical investigation of the influence of intake valve lift profile on a diesel premixed charge compression ignition engine with a variable valve actuation system at moderate loads and speeds

Author:

Jia Ming1,Xie Maozhao1,Wang Tianyou2

Affiliation:

1. School of Energy and Power Engineering, Dalian University of Technology, P.R. China

2. State Key Laboratory of Engines, Tianjin University, P.R. China

Abstract

Variable valve actuation is attracting increasing attention for the control of diesel premixed charge compression ignition engines due to its fast-response characteristics. In this study, a three-dimensional computational fluid dynamics model, coupled with detailed chemical kinetics, is used to evaluate the influence of the intake valve lift profile on combustion and emissions of a diesel premixed charge compression ignition engine at moderate loads and speeds. The results indicate that, among all the tested variable valve actuation strategies, late intake valve closing shows the most potential for control of ignition timing and reduction of nitrogen oxide emissions, while maintaining low soot emissions and fuel consumption. A moderate decrease of intake valve lift is beneficial for the reduction of soot emissions without significant impacts on fuel consumption due to the enhanced intake flow. The enhancement of turbulence kinetic energy of the in-cylinder mixture is helpful for fuel/air mixing and soot reduction. However, the strategies for increasing turbulence kinetic energy by using intake valve reopening around the start of injection timing and one intake valve deactivation lead to deterioration in fuel efficiency due to the increased pumping work. In general, the increase of swirl ratio with various variable valve actuation strategies impedes the fuel/air mixing, resulting in rapid increases of soot emissions, and a lower swirl ratio is more beneficial for mixing and combustion in diesel premixed charge compression ignition engines with early injection timing.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3