Affiliation:
1. Centro Universitário da FEI, São Bernardo do Campo, Brazil
2. Escola Politécnica da USP, São Paulo, Brazil
Abstract
This article addresses the yaw stability of articulated vehicles by assessing the influence of the road-tire friction coefficient on the convergence region of a particular equilibrium condition. In addition, the boundaries of this region are compared to the boundaries of the non-jackknife and non-rollover regions to distinguish the instability phenomenon, jackknife or roll-over, responsible for this delimitation. The vehicle configuration considered in this analysis is composed by one tractor unit and one towed unit connected through an articulation point, for instance, a tractor-semitrailer combination. A nonlinear articulated bicycle model with four degrees of freedom is used together with a nonlinear lateral force tire model. To estimate the convergence region, the phase trajectory method is used. The equations of motion of the mathematical model are numerically integrated for different initial conditions in the phase plane, and the state orbits are monitored in order to verify the convergence point and the occurrence of instability events. In all cases, the longitudinal force on each tire, such as traction and braking, is not considered. The results show the existence of convergence regions delimited only by jackknife events, for low values of the friction coefficient, and only by rollover events, for high values of the friction coefficient. Moreover, the transition between these two conditions as the friction coefficient is changed is graphically presented. The main contributions of this article are the identification of the abrupt reduction of the convergence region as the value of the friction coefficient increases and the distinction of the instability events, jackknife or rollover, that define the boundaries of the convergence region.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献