Lane change maneuver detection considering real-time vehicle dynamic features via V2X communication

Author:

Song Chenyu1ORCID,Zhou Momiao1,Ding Zhizhong1,Liu Zhengqiong1,Cheng Han1,Geng Mingxi1,Xu Wanli1

Affiliation:

1. School of Computer Information, Hefei University of Technology, Hefei, China

Abstract

More than 90% of traffic accidents are caused by driver behavior, with lane change behavior being a major contributor. Recently, driving assistance systems are being introduced on vehicles to reduce traffic accidents, and a reliable vehicle lane change collision detection system is a key component of these systems. Besides, the foundation of the vehicle lane change detection system is the effective vehicle lane change detection model. In this paper, based on the support vector machine, we propose a model for detecting driver lane change maneuvers and take into account the real-time vehicle dynamic features transmitted via Vehicle to X (V2X) Communication. The accuracy is ideal for lane keep and lane change situations, and it is also robust for zigzag driving situations, according to tests conducted using the NGSIM real traffic dataset. The detection accuracy for left and right lane change maneuvers is 97.5% and 99.09%, respectively, while the false alarm rate is 8.56%. Additionally, the average advance detection time is 1.7 s, which is suitable for actual driving application scenarios.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse least squares support vector machine based methods for vehicle driving behavior recognition;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-01-13

2. Vehicle lane change trajectory learning and prediction model considering vehicle interactions and driving styles in highway scene;International Journal of Sensor Networks;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3