Sparse least squares support vector machine based methods for vehicle driving behavior recognition

Author:

Zhao Dongyu1ORCID,Zhao Shuen1

Affiliation:

1. School of Mechanotronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China

Abstract

Intelligent vehicles are expected to accurately recognize the driving intentions of surrounding vehicles so as to precisely identify the hazards to automatic driving and accomplish reasonable motion planning. This paper introduces a model for vehicles driving behavior recognition (VDBR) based on Sparse Least Squares Support Vector Machine (S-LSSVM) by means of machine learning methods, with the subject vehicle and its surrounding vehicles as the research subject. First, the relative lateral displacement and relative lateral speed between vehicles are captured as the eigenvectors after calculation of trajectory curvature and change time window. Then, the pruning algorithm is used to make Least Squares Support Vector Machine (LSSVM) training samples sparse and the Particle Swarm Optimization algorithm (PSO) is employed to accomplish parameter tuning of S-LSSVM. Thus, a modified S-LSSVM model is constructed to grasp the interaction behavior between vehicles. The experiment results demonstrate that the S-LSSVM based model obtain better accuracy and timeliness compared with SVM and LSSVM on the Next Generation Simulation (NGSIM) dataset and the data from autonomous driving experimental platform.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3