Performance comparison of electric-vehicle drivetrain architectures from a vehicle dynamics perspective

Author:

Bayar Kerem1ORCID

Affiliation:

1. Orta Dogu Teknik Universitesi, Ankara, Turkey

Abstract

Recent electric vehicle studies in literature utilize electric motors within an anti-lock braking system, traction-control system, and/or vehicle-stability controller scheme. Electric motors are used as hub motors, on-board motors, or axle motors prior to the differential. This has led to the need for comparing these different drivetrain architectures with each other from a vehicle dynamics standpoint. With this background in place, using MATLAB simulations, these three drivetrain architectures are compared with each other in this study. In anti-lock braking system and vehicle-stability controller simulations, different control approaches are utilized to blend the electric motor torque with hydraulic brake torque; motor ABS, torque decomposition, and optimal slip-tracking control strategies. The results for the anti-lock braking system simulations can be summarized as follows: (1) Motor ABS strategy improves the stopping distance compared to the standard anti-lock braking system. (2) In case the motors are not solely capable of providing the required braking torque, torque decomposition strategy becomes a good solution. (3) Optimal slip-tracking control strategy improves the stopping distance remarkably compared to the standard anti-lock braking system, motor anti-lock braking system, and torque decomposition strategies for all architectures. The vehicle-stability controller simulation results can be summarized as follows: (1) higher affective wheel inertia of the on-board and hub motor architecture dictates a higher need of wheel torque in order to generate the tire force required for the desired yaw rate tracking. A higher level of torque causes a higher level of tire slip. (2) Optimal slip-tracking control strategy reduces the tire slip trends drastically and distributes the traction/braking action to each tire with the control-allocation algorithm specifying the reference slip values. This reduces reference tire slip-tracking error and reduces vehicle sideslip angle. (3) Tire slip trends are lower with the hub motor architecture, compared to the other architectures, due to more precise slip control.

Funder

The Scientific and Technological Research Council of Turkey

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of Electric Vehicle Powertrain for Dynamic Performance Evaluation;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

2. Study on Top Hierarchy Control Strategy of AEBS over Regenerative Brake and Hydraulic Brake for Hub Motor Drive BEVs;Energies;2022-11-09

3. Active motor damping strategy for driveline vibrations of a hybrid electric vehicle during ABS operation;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-07-29

4. Comparison of the Performance of Different Active Suspension Architectures Equipped with Linear Electric Motors;Lecture Notes in Mechanical Engineering;2022

5. Propulsion System of Electric Vehicles: Review;2021 31st Australasian Universities Power Engineering Conference (AUPEC);2021-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3